Artificial Intelligence and Machine Learning for Estimating Poverty

THEME:
STATISTICS, ECONOMICS, COMPUTER SCIENCE, IMAGE MINING

DATE:
15 JULY 2018




The digital revolution continues to generate an abundance of data, which provides new opportunities to capture information about socio-economic conditions at different levels of abstraction to infer development progress. The availability of data on poverty and inequality are nevertheless limited. But such data can be used to monitor changes in prosperity level, as well as to measure the impact of government programmes.

In collaboration with Knowledge Sector Initiative (KSI), Pulse Lab Jakarta is organising an upcoming research dive for development, with a view to addressing this gap by enhancing researchers' familiarity with several related datasets, including satellite imagery, e-commerce data, social media, and socio-economic data. The seventh research dive aims to generate insights on how to leverage new and emerging datasets and Artificial Intelligence (AI) for alleviating poverty across Indonesia. The results from measuring poverty with big data are intended to complement the national socioeconomic survey (SUSENAS) data that has been collected by the National Statistics Agency (BPS).

The participants will be grouped into four research teams, focusing on:

Group 1 - Estimating poverty at the provincial level with satellite data
Group 2 - Estimating poverty at the city level with e-commerce data
Group 3 - Estimating poverty at the district level with social media data
Group 4 - Estimating poverty at the household level with social media data and household survey results

For further information, please refer to the information package.

Pulse Lab Jakarta  |   Wisma Nusantara 5th Floor Jl. MH. Thamrin No.59 Jakarta-Indonesia  |  +62-21-3983-8473  |  plj-proposals@un.or.id